A New Method for Multiple Sperm Cells Tracking
نویسندگان
چکیده
Motion analysis or quality assessment of human sperm cell is great important for clinical applications of male infertility. Sperm tracking is quite complex due to cell collision, occlusion and missed detection. The aim of this study is simultaneous tracking of multiple human sperm cells. In the first step in this research, the frame difference algorithm is used for background subtraction. There are some limitations to select an appropriate threshold value since the output accuracy is strongly dependent on the selected threshold value. To eliminate this dependency, we propose an improved non-linear diffusion filtering in the time domain. Non-linear diffusion filtering is a smoothing and noise removing approach that can preserve edges in images. Many sperms that move with different speeds in different directions eventually coincide. For multiple tracking over time, an optimal matching strategy is introduced that is based on the optimization of a new cost function. A Hungarian search method is utilized to obtain the best matching for all possible candidates. The results show nearly 3.24% frame based error in dataset of videos that contain more than 1 and less than 10 sperm cells. Hence the accuracy rate was 96.76%. These results indicate the validity of the proposed algorithm to perform multiple sperms tracking.
منابع مشابه
A New Maximum Power Point Tracking Method for PEM Fuel Cells Based On Water Cycle Algorithm
Maximum Power Point (MPP) tracker has an important role in the performance of fuel cell (FC) systems improvement. Tow parameters which have effect on the Fuel cell output power are temperature and membrane water. So contents make the MPP change by with variations in each parameter. In this paper, a new maximum power point tracking (MPPT) method for Proton Exchange Membrane (PEM) fuel cell is pr...
متن کاملMultiple Target Tracking in Wireless Sensor Networks Based on Sensor Grouping and Hybrid Iterative-Heuristic Optimization
A novel hybrid method for tracking multiple indistinguishable maneuvering targets using a wireless sensor network is introduced in this paper. The problem of tracking the location of targets is formulated as a Maximum Likelihood Estimation. We propose a hybrid optimization method, which consists of an iterative and a heuristic search method, for finding the location of targets simultaneously. T...
متن کاملConvolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملMultiple Target Tracking With a 2-D Radar Using the JPDAF Algorithm and Combined Motion Model
Multiple target tracking (MTT) is taken into account as one of the most important topics in tracking targets with radars. In this paper, the MTT problem is used for estimating the position of multiple targets when a 2-D radar is employed to gather measurements. To do so, the Joint Probabilistic Data Association Filter (JPDAF) approach is applied to tracking the position of multiple targets. To ...
متن کاملOnline multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014